A new shrinkage estimator for dispersion improves differential expression detection in RNA-seq data

نویسندگان

  • Hao Wu
  • Chi Wang
  • Zhijin Wu
چکیده

Recent developments in RNA-sequencing (RNA-seq) technology have led to a rapid increase in gene expression data in the form of counts. RNA-seq can be used for a variety of applications, however, identifying differential expression (DE) remains a key task in functional genomics. There have been a number of statistical methods for DE detection for RNA-seq data. One common feature of several leading methods is the use of the negative binomial (Gamma-Poisson mixture) model. That is, the unobserved gene expression is modeled by a gamma random variable and, given the expression, the sequencing read counts are modeled as Poisson. The distinct feature in various methods is how the variance, or dispersion, in the Gamma distribution is modeled and estimated. We evaluate several large public RNA-seq datasets and find that the estimated dispersion in existing methods does not adequately capture the heterogeneity of biological variance among samples. We present a new empirical Bayes shrinkage estimate of the dispersion parameters and demonstrate improved DE detection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dispersion Estimation and Its Effect on Test Performance in RNA-seq Data Analysis: A Simulation-Based Comparison of Methods

A central goal of RNA sequencing (RNA-seq) experiments is to detect differentially expressed genes. In the ubiquitous negative binomial model for RNA-seq data, each gene is given a dispersion parameter, and correctly estimating these dispersion parameters is vital to detecting differential expression. Since the dispersions control the variances of the gene counts, underestimation may lead to fa...

متن کامل

BioC 2012: Differential expression of RNA-Seq data at the gene level

A basic task in the analysis of count data from RNA-Seq is the detection of differentially expressed genes. The count data are presented as a table which reports, for each sample, the number of reads that have been assigned to a gene. Analogous analyses also arise for other assay types, such as comparative ChIP-Seq. The package DESeq provides methods to test for differential expression by use o...

متن کامل

Differential expression of RNA-Seq data at the gene level – the DESeq package

A basic task in the analysis of count data from RNA-Seq is the detection of differentially expressed genes. The count data are presented as a table which reports, for each sample, the number of reads that have been assigned to a gene. Analogous analyses also arise for other assay types, such as comparative ChIP-Seq. The package DESeq provides methods to test for differential expression by use o...

متن کامل

Differential analyses with DSS

This vignette introduces the use of the Bioconductor package DSS (Dispersion Shrinkage for Sequencing data), which is designed for differential analysis based on high-throughput sequencing data. It performs differential expression analyses for RNA-seq, and differential methylation analyses for bisulfite sequencing (BS-seq) data. The core of DSS is a procedure based on Bayesian hierarchical mode...

متن کامل

Shrinkage of dispersion parameters in the binomial family, with applications to genomic sequencing

The prevalence of sequencing experiments in genomics has led to an increased use of methods for count data in analyzing high-throughput genomic data to perform analyses. The importance of shrinkage methods in improving the performance of statistical methods remains. A common example is that of gene expression data, where the counts per gene are often modeled as some form of an over-dispersed Po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2013